Long before philosophy and physics split into separate career paths, the natural philosophers of Ancient Greece speculated about the basic components from which all else is made. Plato entertained a theory on which everything on Earth is made from four fundamental particles. There are stable cube-shaped particles of earth, pointy and painful tetrahedron-shaped particles of fire, somewhat less pointy octahedron-shaped particles of air, and reasonably round icosahedron-shaped particles of water. Like the particles of contemporary physics, Plato thought it was possible for these particles to be created and destroyed. For example, an eight-sided air particle could be created by combining two four-sided fire particles (as one might imagine occurring when a campfire dies out).
Our understanding of nature has come a long way since Plato. We have learned that much of our world is made of the various atoms compiled in the periodic table of elements. We have also learned that atoms themselves are built from more fundamental pieces.
Today, philosophers who are interested in figuring out what everything is made of look to contemporary physics for answers. But, finding answers in physics is not simply a matter of reading textbooks. Physicists deftly shift between different pictures of reality as it suits the task at hand. The textbooks are written to teach you how to use the mathematical tools of physics most effectively, not to tell you what things the equations are describing. It takes hard work to distill a story about what’s really happening in nature from the mathematics. This kind of research is considered “philosophy of physics” when done by philosophers and “foundations of physics” when done by physicists.